Linear Inequalities
Recall the following rules for working with inequalities (where $a$, $b$, and $c$ are real numbers):
- Addition/Subtraction:
- If $a \leq b$, then $a \pm c \leq b \pm c$.
- If $a \geq b$, then $a \pm c \geq b \pm c$.
- Multiplication/Division (if $c>0$):
- If $a \leq b$, then $ca \leq cb$ and $\displaystyle \frac{a}{c}\leq \frac{b}{c}$.
- If $a \geq b$, then $ca \geq cb$ and $\displaystyle \frac{a}{c}\geq \frac{b}{c}$.
- Multiplication/Division (if $c< 0$):
- If $a \leq b$, then $ca \geq cb$ and $\displaystyle \frac{a}{c}\geq \frac{b}{c}$.
- If $a \geq b$, then $ca \leq cb$ and $\displaystyle \frac{a}{c}\leq \frac{b}{c}$.
[Note: Rules 3.i and 3.ii are often described “if you multiply or divide by a negative number you must reverse the inequality".]
- Reciprocals:
- If $0 < a \leq b$, then $\displaystyle \frac{1}{a} \geq \frac{1}{b}$.
- If $a \geq b > 0$, then $\displaystyle \frac{1}{a} \leq \frac{1}{b}$.
Linear inequalities.