- 1. Determine whether the function is one-to-one. If the function is one-to-one, prove it, as in the video.
 - (a) $f(x) = x^2$ (b) $f(x) = x^3$ (c) $f(x) = x^3 + 2$
 - (d) f(x) = |x+3| (e) f(x) = x (f) f(x) = 2x+3
 - (g) $f(x) = \frac{x-2}{1-x}$ (h) $f(x) = \frac{2x-5}{x+1}$ (i) $f(x) = \frac{4x+1}{x-4}$
- 2. Prove that each of the following functions are one-to-one, as in the video, and then find the inverse.
 - (a) f(x) = 6x 2 (b) f(x) = 42 x (c) $f(x) = \frac{x 2}{3} + 4$
 - (d) $f(x) = 1 \frac{4+3x}{5}$ (e) $f(x) = \frac{3}{4-x}$ (f) $f(x) = \frac{x}{1-3x}$
 - (g) $f(x) = \frac{2x-1}{3x+4}$ (h) $f(x) = \frac{4x+2}{3x-6}$ (i) $f(x) = \frac{-3x-2}{x+3}$

Answers

1. The one-to-one functions are: (b), (c), (e), (f), (g), (h), (i).

2. (a)
$$f^{-1}(x) = \frac{x+2}{6}$$
 (b) $f^{-1}(x) = 42 - x$ (c) $f^{-1}(x) = 3x - 10$
(d) $f^{-1}(x) = -\frac{5}{3}x + \frac{1}{3}$ (e) $f^{-1}(x) = \frac{4x-3}{x}$ (f) $f^{-1}(x) = \frac{x}{3x+1}$
(g) $f^{-1}(x) = \frac{4x+1}{2-3x}$ (h) $f^{-1}(x) = \frac{6x+2}{3x-4}$ (i) $f^{-1}(x) = \frac{-3x-2}{x+3}$