LINEAR EQUATIONS

To solve a linear equation, we may apply the rules below. The values a, b and c are real numbers, unless otherwise stated.

- 1. Addition and subtraction rules:
 - (a) If a = b, then a + c = b + c.
 - (b) If a = b, then a c = b c.
- 2. Multiplication and division rules:
 - (a) If a = b, then ca = cb.
 - (b) If a = b, then $\frac{a}{c} = \frac{b}{c}$ $(c \neq 0)$.
- 3. Switching sides:
 - (a) If a = b, then b = a.

VIDEO EXAMPLE 2.1 - SOLVING LINEAR EQUATIONS

DEFINITION OF ABSOLUTE VALUE

Formally, the absolute value can be defined as a piece-wise function.

$$|x| = \begin{cases} x & \text{if } x \ge 0\\ -x & \text{if } x < 0 \end{cases}$$

One way of interpreting the absolute value is to think of |x| as the distance from the real number x to the origin 0. For example, |-2| = 2 and |2| = 2 since -2 and 2 are both two units away from the origin.

Absolute Value Equations

The general procedure to solve an equation involving a single absolute value expression is as follows:

- 1. Isolate the absolute value expression on one side of the equation.
- 2. Consider **both** the postive and negative cases of the absolute value in order to obtain all possible solutions of the equation.
- 3. Check for extraneous solutions by making a substitution into the original equation to determine if your possible solutions are valid.

VIDEO EXAMPLE 2.2 - ABSOLUTE VALUE EQUATIONS

QUADRATIC EQUATIONS: FACTORING

Recall that if a product of two factors is equal to zero, then at least one of the factors must be equal to zero:

1. If ab = 0, then either a = 0 or b = 0.

We can use this important rule to solve quadratic equations to solve a quadratic equation:

- 1. Rewrite your quadratic equation in standard form: $ax^2 + bx + c = 0$.
- 2. If possible, factor the quadratic expression on the left side of the equation. If the expression is not factorable, try a different technique.
- 3. Set each factor equal to zero and solve the resulting linear equation for x.

VIDEO EXAMPLE 2.3 - QUADRATIC EQUATIONS: FACTORING

The Quadratic Formula

You should have the quadratic formula memorized. If $ax^2 + bx + c = 0$, where $a \neq 0$, then all real-valued solutions are given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

The expression $b^2 - 4ac$ is called the discriminant. Recall:

- 1. $b^2 4ac > 0$ implies the quadratic equation has two solutions.
- 2. $b^2 4ac = 0$ implies the quadratic equation has one solution.
- 3. $b^2 4ac < 0$ implies the quadratic equation has no solutions. In this case the quadratic expression $ax^2 + bx + c$ does not factor over the real numbers and is called an irreducible quadratic.

VIDEO EXAMPLE 2.4 - QUADRATIC EQUATIONS: QUADRATIC FORMULA

RATIONAL EQUATIONS

Recall that if a fraction $\frac{a}{b}$ ($b \neq 0$) is equal to zero, then its numerator must be equal to zero:

1. If $\frac{a}{b} = 0$, then a = 0. $(b \neq 0)$

This is an important rule when solving rational equations. To solve a rational equation:

- 1. Combine all rational expressions into one fraction on the left side of the equation.
- 2. Set the numerator equal to zero and solve the resulting equation.

VIDEO EXAMPLE 2.5 - RATIONAL EQUATIONS 1 VIDEO EXAMPLE 2.6 - RATIONAL EQUATIONS 2

RADICAL EQUATIONS

Recall that the results obtained from squaring two equivalent expressions are equal:

1. If a = b, then $a^2 = b^2$.

This is the important rule for solving radical equations.

NOTE: If $a^2 = b^2$, it is not necessarily true that a = b. For example $(-1)^2 = (1)^2$, but $-1 \neq 1$. For this reason, we must check for extraneous solutions when working with radical equations.

To solve a radical equation containing one square root:

- 1. Isolate the square root expression on one side of the equal sign.
- 2. Square both sides of the equation.
- 3. Solve the resulting equation.
- 4. Check for extraneous solutions by making a substitution into the original equation to determine if your possible solutions are valid.

VIDEO EXAMPLE 2.7 - RADICAL EQUATIONS: ONE SQUARE ROOT

To solve a radical equation containing two square roots:

- 1. Isolate one square root expression on one side of the equal sign.
- 2. Square both sides of the equation. You should now have one radical left.
- 3. Isolate the second square root on one side of the equation.
- 4. Square both sides of the equation.
- 5. Solve the resulting equation.
- 6. Check for extraneous solutions by making a substitution into the original equation to determine if your possible solutions are valid.

VIDEO EXAMPLE 2.8 - RADICAL EQUATIONS: TWO SQUARE ROOTS

INTERVAL NOTATION

To describe numbers that lie between endpoints, we may use the following notation.

- 1. For values greater than a real number a:
 - (a) use x > a if you do not want to include the endpoint. On the real number line, use an open circle at a.

Figure 1: The interval x > 2.

(b) use $x \ge a$ if you do want to include the endpoint. Use a closed circle at a.

Figure 2: The interval $x \ge 2$.

- 2. For values less than a real number a:
 - (a) use x < a if you do not want to include the endpoint. Use an open circle at a.

Figure 3: The interval x < 2.

(b) use $x \leq a$ if you do want to include the endpoint. Use a closed circle at a.

Figure 4: The interval $x \leq 2$.

VIDEO EXAMPLE 2.9 - INTERVAL NOTATION 1

You should be comfortable using both interval notation and set notation.

- 1. For values greater than a real number a:
 - (a) use $(a, \infty) = \{x \mid x > a\}$ if you do not want to include the endpoint. Use an open circle at a.

Figure 5: The interval $(2, \infty) = \{x \mid x > 2\}.$

(b) use $[a, \infty) = \{x \mid x \ge a\}$ if you do want to include the endpoint. Use a closed circle at a.

- Figure 6: The interval $[2, \infty) = \{x \mid x \ge 2\}.$
- 2. For values less than a real number a:
 - (a) use $(-\infty, a) = \{x \mid x < a\}$ if you do not want to include the endpoint. Use an open circle at a.

- Figure 7: The interval $(-\infty, 2) = \{x \mid x < 2\}.$
- (b) use $(-\infty, a] = \{x \mid x \le a\}$ if you do want to include the endpoint. Use a closed circle at a.

Figure 8: The interval $(-\infty, 2] = \{x \mid x \le 2\}.$

VIDEO EXAMPLE 2.10 - INTERVAL NOTATION 2

LINEAR INEQUALITIES

Recall the following rules for working with inequalities (where a, b, and c are real numbers):

- 1. Addition/Subtraction:
 - (a) If $a \leq b$, then $a \pm c \leq b \pm c$.
 - (b) If $a \ge b$, then $a \pm c \ge b \pm c$.
- 2. Multiplication/Division (if c > 0):
 - (a) If $a \le b$, then $ca \le cb$ and $\frac{a}{c} \le \frac{b}{c}$. (b) If $a \ge b$, then $ca \ge cb$ and $\frac{a}{c} \ge \frac{b}{c}$.
- 3. Multiplication/Division (if c < 0):
 - (a) If $a \le b$, then $ca \ge cb$ and $\frac{a}{c} \ge \frac{b}{c}$. (b) If $a \ge b$, then $ca \le cb$ and $\frac{a}{c} \le \frac{b}{c}$.
- 4. Reciprocals:
 - (a) If $0 < a \le b$, then $\frac{1}{a} \ge \frac{1}{b}$. (b) If $a \ge b > 0$, then $\frac{1}{a} \le \frac{1}{b}$.

VIDEO EXAMPLE 2.11 - LINEAR INEQUALITIES

Absolute Value Inequalities

Recall the definition of absolute value.

If c is any positive real number, there are four absolute value inequality rules for you to know. If you interpret |x| as the distance from x to 0, these inequalities should be easy to remember.

1. If |x| < c, then -c < x < c.

Figure 1: |x| < 2 means -2 < x < 2.

2. If |x| > c, then x < -c or x > c.

-				<u> </u>		-
-6	- 4	-2	0	2	4	6

Figure 2: |x| > 2 means x < -2 or x > 2.

3. If $|x| \leq c$, then $-c \leq x \leq c$

Figure 3:
$$|x| \le 2$$
 means $-2 \le x \le 2$.

4. If $|x| \ge c$, then $x \le -c$ or $x \ge c$

Figure 4: $|x| \ge 2$ means $x \le -2$ or $x \ge 2$.

VIDEO EXAMPLE 2.12 - ABSOLUTE VALUE INEQUALITIES