Pythagorean Identities

Provided that all trigonometric functions below are defined for $x$, the three pythagorean identities are:
  1. $\sin^{2}(x) + \cos^{2}(x) = 1$
  2. $\tan^{2}(x) + 1 = \sec^{2}(x)$
  3. $1 + \cot^{2}(x) = \csc^{2}(x)$.
Pythagorean identities.

Sum and Difference Formulas

Recall the sum and difference formulas for sine and cosine:
  1. $\sin(x+y) = \sin(x)\cos(y) + \cos(x)\sin(y)$
  2. $\sin(x-y) = \sin(x)\cos(y) - \cos(x)\sin(y)$
  3. $\cos(x+y) = \cos(x)\cos(y) - \sin(x)\sin(y)$
  4. $\cos(x-y) = \cos(x)\cos(y) + \sin(x)\sin(y)$.
Sum and difference formulas.

Double Angle Identities

If we substitute $y=x$ into the addition formulas above, we obtain the double angle formulas for sine and cosine. These formulas are very important in calculus.
  1. $\sin(2x) = 2\sin(x)\cos(x)$
  2. $\cos(2x) = \cos^{2}(x) - \sin^{2}(x) = 1 - 2\sin^{2}(x) = 2\cos^{2}(x) -1$
  3. $\cos^2 x= \displaystyle \frac{1+\cos(2x)}{2}$
  4. $\sin^2 x=\displaystyle \frac{1-\cos(2x)}{2}$
Double angle formulas example 1
Double angle formulas example 2

Problem Set 5.4

Download

Next lesson

Previous lesson