A function $f:D \rightarrow C$ is a rule that assigns to each element $x$ in a set $D$ exactly one element, called $f(x)$, in a set $C$.
$D$ is called the domain of $f$.
$C$ is called the codomain of $f$.
The subset $R=\left\{ y \in C \mid f(x)=y \textrm{ for some }x \in D \right\}$ is called the range of $f$.
Some basics.
Evaluating functions example 1.
Evaluating functions example 2.
Intercepts
Use the following rules to determine the intercepts, or zeros, of a given function $y=f(x)$.
To determine the $x$-intercepts, set $y=0$ and solve for $x$.
To determine the $y$-intercepts, set $x=0$ and solve for $y$.
Intercepts, part 1.
Intercepts, part 2.
Summary of Important Functions
The following is a summary of important functions. You should have this information memorized for your calculus class. Links are given to the sections of the workshop where more information can be found.
Domain: $[0, \infty) = \left\{ x \mid x \geq 0 \right\}$
Range: $[0, \infty) = \left\{ y \mid y \geq 0 \right\}$
Graph of the basic square root function $f(x)=\sqrt{x}$.
Basic Cube Root Function: $f(x) = \sqrt[3]{x}$
Domain: $(-\infty,\infty) = \left\{ x \mid x \in \mathbb{R}\right\}$
Range: $(-\infty,\infty) = \left\{ y \mid y \in \mathbb{R}\right\}$
Graph of the basic cube root function $f(x)=\sqrt[3]{x}$.
Reciprocal Function: $\displaystyle f(x) =\frac{1}{x}$ (more on rational functions)
Domain: $(-\infty,0) \cup (0,\infty) = \left\{ x \mid x \neq 0 \right\}$
Range: $(-\infty,0) \cup (0,\infty) = \left\{ y \mid y \neq 0 \right\}$
Graph of the reciprocal function $f(x)=\frac{1}{x}$.
Absolute Value Function:
$\displaystyle f(x) = |x| = \begin{cases}
x & \text{ if } x\geq 0 \\
-x & \text{ if } x < 0
\end{cases}$
(more on absolute value functions)
Domain: $(-\infty,\infty) = \left\{ x \mid x \in \mathbb{R}\right\}$
Range: $[0, \infty) = \left\{ y \mid y \geq 0 \right\}$
Graph of the absolute value function $f(x)=|x|$.
Exponential Function with Base $a>0$ and $a\neq1$: $f(x) = a^{x}$
(more on exponential functions)
Domain: $(-\infty,\infty) = \left\{ x \mid x \in \mathbb{R}\right\}$
Range: $(0, \infty) = \left\{ y \mid y > 0 \right\}$
Graph of the natural exponential function $f(x)=\textrm{e}^{x}$.
Logarithmic Function with Base $a>0$ and $a\neq1$: $f(x) = \log_{a}(x)$
(more on logarithmic functions)
Domain: $(0,\infty) = \left\{ x \mid x >0 \right\}$
Range: $(-\infty, \infty) = \left\{ y \mid y \in \mathbb{R} \right\}$
Graph of the natural logarithmic function $f(x)=\ln(x) = \log_{\textrm{e}}(x)$.