Chapter 3: Functions

Introduction to Functions

A function $f:D \rightarrow C$ is a rule that assigns to each element $x$ in a set $D$ exactly one element, called $f(x)$, in a set $C$.
Some basics.
Evaluating functions example 1.
Evaluating functions example 2.

Intercepts

Use the following rules to determine the intercepts, or zeros, of a given function $y=f(x)$.
  1. To determine the $x$-intercepts, set $y=0$ and solve for $x$.
  2. To determine the $y$-intercepts, set $x=0$ and solve for $y$.
Intercepts, part 1.

Intercepts, part 2.

Summary of Important Functions

The following is a summary of important functions. You should have this information memorized for your calculus class. Links are given to the sections of the workshop where more information can be found.
  1. Basic Linear Function: $f(x) = x$ (more on linear functions)
    • Domain: $(-\infty,\infty) = \left\{ x \mid x \in \mathbb{R}\right\}$
    • Range: $(-\infty,\infty) = \left\{ y \mid y \in \mathbb{R}\right\}$
    Graph of the basic linear function $f(x)=x$.
  2. Basic Quadratic Function: $f(x) = x^{2}$ (more on quadratic functions)
    • Domain: $(-\infty,\infty) = \left\{ x \mid x \in \mathbb{R}\right\}$
    • Range: $[0, \infty) = \left\{ y \mid y \geq 0 \right\}$
    Graph of the basic quadratic function $f(x)=x^{2}$.
  3. Basic Cubic Function: $f(x) = x^{3}$ (more on polynomial functions)
    • Domain: $(-\infty,\infty) = \left\{ x \mid x \in \mathbb{R}\right\}$
    • Range: $(-\infty,\infty) = \left\{ y \mid y \in \mathbb{R}\right\}$
    Graph of the basic cubic function $f(x)=x^{3}$.
  4. Basic Square Root Function: $f(x) = \sqrt{x}$ (more on radical functions)
    • Domain: $[0, \infty) = \left\{ x \mid x \geq 0 \right\}$
    • Range: $[0, \infty) = \left\{ y \mid y \geq 0 \right\}$
    Graph of the basic square root function $f(x)=\sqrt{x}$.
  5. Basic Cube Root Function: $f(x) = \sqrt[3]{x}$
    • Domain: $(-\infty,\infty) = \left\{ x \mid x \in \mathbb{R}\right\}$
    • Range: $(-\infty,\infty) = \left\{ y \mid y \in \mathbb{R}\right\}$
    Graph of the basic cube root function $f(x)=\sqrt[3]{x}$.
  6. Reciprocal Function: $\displaystyle f(x) =\frac{1}{x}$ (more on rational functions)
    • Domain: $(-\infty,0) \cup (0,\infty) = \left\{ x \mid x \neq 0 \right\}$
    • Range: $(-\infty,0) \cup (0,\infty) = \left\{ y \mid y \neq 0 \right\}$
    Graph of the reciprocal function $f(x)=\frac{1}{x}$.
  7. Absolute Value Function: $\displaystyle f(x) = |x| = \begin{cases} x & \text{ if } x\geq 0 \\ -x & \text{ if } x < 0 \end{cases}$
    (more on absolute value functions)
    • Domain: $(-\infty,\infty) = \left\{ x \mid x \in \mathbb{R}\right\}$
    • Range: $[0, \infty) = \left\{ y \mid y \geq 0 \right\}$
    Graph of the absolute value function $f(x)=|x|$.
  8. Exponential Function with Base $a>0$ and $a\neq1$: $f(x) = a^{x}$ (more on exponential functions)
    • Domain: $(-\infty,\infty) = \left\{ x \mid x \in \mathbb{R}\right\}$
    • Range: $(0, \infty) = \left\{ y \mid y > 0 \right\}$
    Graph of the natural exponential function $f(x)=\textrm{e}^{x}$.
  9. Logarithmic Function with Base $a>0$ and $a\neq1$: $f(x) = \log_{a}(x)$ (more on logarithmic functions)
    • Domain: $(0,\infty) = \left\{ x \mid x >0 \right\}$
    • Range: $(-\infty, \infty) = \left\{ y \mid y \in \mathbb{R} \right\}$
    Graph of the natural logarithmic function $f(x)=\ln(x) = \log_{\textrm{e}}(x)$.
  10. Sine Function: $f(x) = \sin(x)$ (more on trigonometric functions)
    • Domain: $(-\infty,\infty) = \left\{ x \mid x \in \mathbb{R}\right\}$
    • Range: $[-1,1] = \left\{ y \mid -1\leq y \leq 1 \right\}$
    Graph of the sine function $f(x)=\sin(x)$.
  11. Cosine Function: $f(x) = \cos(x)$
    • Domain: $(-\infty,\infty) = \left\{ x \mid x \in \mathbb{R}\right\}$
    • Range: $[-1,1] = \left\{ y \mid -1\leq y \leq 1 \right\}$
    Graph of the cosine function $f(x)=\cos(x)$.
  12. Tangent Function: $f(x) = \tan(x)$
    • Domain: $\cdots \cup \left( -\frac{3\pi}{2},-\frac{\pi}{2} \right) \cup \left( -\frac{\pi}{2},\frac{\pi}{2} \right) \cup \left( \frac{\pi}{2},\frac{3\pi}{2} \right) \cup \cdots = \left\{ x \mid x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}\right\}$
    • Range: $(-\infty, \infty) = \left\{ y \mid y \in \mathbb{R} \right\}$
    Graph of the tangent function $f(x)=\tan(x)$.

Problem Set 3.1

Download

Next lesson