Quadratic Functions

The graph of a quadratic function is always a parabola. There are two main forms for quadratic functions you should be aware of for your calculus course.
  1. Standard Form: $f(x) = ax^{2}+bx+c$ where $a \neq 0$
    • if $a>0$, the parabola opens upwards
    • if $a<0$ the parabola opens downwards
    • This form is useful when you need to factor or use the quadratic formula.
  2. Vertex Form: $f(x) = a(x-p)^{2} + q$ where $a \neq 0$
    • if $a>0$, the parabola opens upwards
    • if $a<0$ the parabola opens downwards
    • $(p,q)$ is the vertex of the parabola
    • This form is useful when you need to sketch the function or find the vertex of the parabola.
The parabolas of $f(x)=a(x-p)^{2} + q$.

Completing the Square

Given a quadratic function in standard form $f(x) = ax^{2}+bx+c$, we can find the vertex form by completing the square. Follow the steps below to complete the square.
  1. If $a=1$ (i.e. $f(x) = x^{2}+bx+c$):
    1. Calculate $\displaystyle \left( \frac{b}{2} \right)^{2}$.
    2. Add and subtract this value to obtain $f(x) = \displaystyle x^{2}+bx +\left( \frac{b}{2} \right)^{2} - \left( \frac{b}{2} \right)^{2}+c$.
    3. The function simplifies to $\displaystyle f(x) = \left( x + \frac{b}{2} \right)^{2} - \frac{b^{2}}{4} +c$.
  2. If $a \neq 1$:
    1. Factor out the coefficient $a$ from the first two terms: $\displaystyle f(x) = a \left( x^{2} + \frac{b}{a}x \right) + c$.
    2. Calculate $\displaystyle \left( \frac{b}{2a} \right)^{2}$.
    3. Add and subtract this value inside the parentheses to obtain $\displaystyle f(x) = a \left( x^{2} + \frac{b}{a}x +\left( \frac{b}{2a} \right)^{2} - \left( \frac{b}{2a} \right)^{2}\right) + c$.
    4. Remove $\displaystyle - \left( \frac{b}{2a} \right)^{2}$ from the parentheses by multiplying by $a$: $\displaystyle f(x) = a \left( x^{2} + \frac{b}{a}x +\left( \frac{b}{2a} \right)^{2} \right) - a\cdot \left( \frac{b}{2a} \right)^{2}+ c$.
    5. The function simplifies to $\displaystyle f(x) = a\left( x + \frac{b}{2a} \right)^{2} - \frac{b^{2}}{4a}+c$.
Completing the square.

Basic Function Transformations

Below is a chart summarizing transformations of the basic quadratic function $f(x) = x^{2}$.

Form Description
$f(x) + c = x^{2} + c$ Shift up ($c>0$) or down ($c< 0$) by $c$ units
$f(x+c) = (x+c)^{2}$ Shift left ($c>0$) or right ($c< 0$) by $c$ units
$-f(x) = -x^{2}$ Reflection over the $x$-axis
$f(-x) = (-x)^{2}$ Reflection over the $y$-axis
$cf(x) = cx^{2}$ Stretch ($c>1$) or compression ($0< c < 1$) by a factor of $c$ in the $y$-axis
$f(cx) = (cx)^{2}$ Stretch ($0< c < 1$) or compression ($c>1$) by a factor of $c$ in the $x$-axis

Function transformations.

Problem Set 3.3

Download

Next lesson

Previous lesson