The graph of a quadratic function is always a parabola. There are two main forms for quadratic functions you should be aware of for your calculus course.
Standard Form: $f(x) = ax^{2}+bx+c$ where $a \neq 0$
if $a>0$, the parabola opens upwards
if $a<0$ the parabola opens downwards
This form is useful when you need to factor or use the quadratic formula.
This form is useful when you need to sketch the function or find the vertex of the parabola.
The parabolas of $f(x)=a(x-p)^{2} + q$.
Completing the Square
Given a quadratic function in standard form $f(x) = ax^{2}+bx+c$, we can find the vertex form by completing the square. Follow the steps below to complete the square.
Add and subtract this value inside the parentheses to obtain $\displaystyle f(x) = a \left( x^{2} + \frac{b}{a}x +\left( \frac{b}{2a} \right)^{2} - \left( \frac{b}{2a} \right)^{2}\right) + c$.
Remove $\displaystyle - \left( \frac{b}{2a} \right)^{2}$ from the parentheses by multiplying by $a$:
$\displaystyle f(x) = a \left( x^{2} + \frac{b}{a}x +\left( \frac{b}{2a} \right)^{2} \right) - a\cdot \left( \frac{b}{2a} \right)^{2}+ c$.
The function simplifies to $\displaystyle f(x) = a\left( x + \frac{b}{2a} \right)^{2} - \frac{b^{2}}{4a}+c$.
Completing the square.
Basic Function Transformations
Below is a chart summarizing transformations of the basic quadratic function $f(x) = x^{2}$.
Form
Description
$f(x) + c = x^{2} + c$
Shift up ($c>0$) or down ($c< 0$) by $c$ units
$f(x+c) = (x+c)^{2}$
Shift left ($c>0$) or right ($c< 0$) by $c$ units
$-f(x) = -x^{2}$
Reflection over the $x$-axis
$f(-x) = (-x)^{2}$
Reflection over the $y$-axis
$cf(x) = cx^{2}$
Stretch ($c>1$) or compression ($0< c < 1$) by a factor of $c$ in the $y$-axis
$f(cx) = (cx)^{2}$
Stretch ($0< c < 1$) or compression ($c>1$) by a factor of $c$ in the $x$-axis